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1 sl2−Categories

Theorem 1 (Main Theorem of EQ’22)

The following categories

�

⊕
α∈Q+

An−1

R(α)−mod (Cat of U+
q (gln))

�

•
U(sl2) (Cat of Uq(sl2))

� D(Cn, Sn) ( ∼= SBim(Cn, Sn) in char 0) (Cat of Hq(Sn))

have the structure of a monoidal sl2−cat.

Definition 1.1. Let k be a commutative domain and g a lie algebra over k. A g−algebra is a k−algebra

A with an action of g by derivations. We will write (A, g) for this structure.

Example 1. Let A = Rn = k[x1, . . . , xn] where deg(xi) = 2 and let g = sl2 = {d = e, h,−z = f}. Then

d =
∑
i

x2
i

∂

∂xi
, h · p(x) = deg(p(x))p(x), z =

∑
i

∂

∂xi

gives A the structure of a g−algebra (note that the weight grading agrees with the usual grading by

construction). Note this is equivalent to d(xi) = x2
i and z(xi) = 1 ∀i and extending by Leibniz rule.

Definition 1.2. Let k be a commutative domain and g a lie algebra over k. A g−category C is a

category with an action of g on the morphism spaces such that composition of morphisms

HomC (A,B)⊗HomC (B,C)→ HomC (A,C)

is a morphism of sl2−modules. A monoidal g−category is a g−category which is also monoidal s.t.

x(f ⊗ g) = x(f)⊗ g + f ⊗ x(g)

(Note that composition of morphisms being a morphism of sl2−modules is the same as above but with

⊗ replaced by ◦.)

Example 2. Let C = D(C2, S2) and g = sl2 = {d = e, h,−z = f}. Hom spaces of C are monoidally

generated by [draw trivalent and dots] as free R2−modules. Define
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Section 2.1 Cailan Li Representations of polynomial sl2−algebras

and h(ϕ) = deg(ϕ)ϕ. (Thus, the weight grading on the hom spaces agrees with the usual grading) For

R2, sl2 acts on R2 as above. To check that this indeed gives an action of sl2, we need to check two

things.

(1) d, h,−z preserves the generating relations of D(C2, S2)

(2) d, h,−z satisfies the relations of sl2 when applied to the generating morphisms.

Let us check the barbell relation. [Do computation]. To check that d, h,−z satisfies the relations of sl2,

d, z move us into the correct weight space by construction so we only need to check [d,−z] = h. z kills

any diagram without polynomials and so we only need to check

z(d(φ)) = h(φ) = deg(φ)φ

where φ is a generating morphism which we leave as an exercise.

Remark. The notion of a g−algebra and a g−category can be viewed as analogues of dg−algebras

and dg−categories where the former uses the hopf algebra U(sl2) while the latter uses the hopf algebra

k[d]/(d2).

(We want to now decompose hom spaces in the Soergel category as sl2 representations, so we will now

introduce the representations that show up.)

2 Representations of polynomial sl2−algebras

2.1 Lowest Weight Vermas and CoVermas

Definition 2.1. Again let k be a commutative domain. Given k ∈ k, define the sl2 modules (write vk,0
instead of 0 for verma and wk,0 for the coverma)
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Section 2.2 Cailan Li Rank-one modules over polynomial rings

(draw in action of h(vk,m) = (k + 2m)vk,m) These are the lowest weight verma and coverma modules.

Proposition 2.2 (Properties). (i) ∆(k),∇(k) are indecomposable for all k ∈ Z.

(ii) If k > 0, ∆(k),∇(k) are simple.

(iii) If k ≤ 0 we have SES

0→ ∇(−k + 2)→ ∆(k)→W (k)→ 0

0→W∨(k)→ ∇(k)→ ∆(−k + 2)→ 0

where W (k),W∨(k) are the Weyl and dual Weyl modules (Both equal Lk over Q).

(iv) If k contains Q then ∆(k) ∼= ∇(k) ⇐⇒ k > 0. Otherwise ∇(k) ∼= ∆(k) ⇐⇒ k = 1.

Proof. (iii) Note that −k+ 2 = s•−ρ k, draw out when m = −k+ 2 for ∆(k). One might have expected

that ∇(−k + 2) and ∆(−k + 2) swap places (this is what happens in category O for instance) but

integrally by part (iv), ∇(−k + 2) 6= ∆(−k + 2) most of the time. �

2.2 Rank-one modules over polynomial rings

Recall that R1 = k[x] and d = x2 ∂

∂x
and z =

∂

∂z

Proposition 2.3. R1
∼= ∇(0) as sl2 −mod

Proof. w0,m 7→ xm is a clear bijection. Note that the action of d, z on ∇(0) is given by

d(w0,m) = mwk,m+1 z(w0,m+1) = (m+ 1)w0,m

which exactly matches with d(xm) = mxm+1, z(xm+1) = (m+ 1)xm. �

Definition 2.4. Let a ∈ k and let R1 〈a〉 =free graded rank 1 R1 module with generator 1a. Define a

(R1, sl2) module structure on R1 〈a〉 via

d(1a) = ax · 1a, z(1a) = 0, h(1a) = a1a

and extending to all of R1 〈a〉 by the Leibniz rule.

Proposition 2.5. (i) Any (R1, sl2)−module structure on R1 where h acts semisimply is isomorphic

to R1 〈a〉 for a unique a ∈ k.

(ii) We have an isomorphism R1 〈a〉 ∼= ∇(a) of sl2 modules.

Proof. (i) Let M be free of rank 1 over R1 with generator v. v is in lowest degree(weight). We know

that hv = cv for some c ∈ k by the semisimple condition. Now because the only way to increase the

weight by 2 is to multiply by x, we must have that d(v) = c′x · v for some c′ ∈ k and similarly z(v) = 0.

Now applying [d,−z] = h to v we have

cv = h(v) = (−dz + zd)(v) = z(c′x · v) = c′v

and thus c = c′ and so the action of d, z, h matches with R1 〈a〉 above.

(ii) Left as an exercise to show that xm · 1a 7→ wa,m gives iso. �
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Section 3 Cailan Li Filtrations

Definition 2.6. Let p(~x) =
∑

aixi be a linear polynomial in Rn and let Rn 〈p(~x)〉 =free graded rank

1 Rn−module with generator 1p(~x). Define a (Rn, sl2) module structure on Rn 〈a〉 via

d(1p(~x)) = p(~x) · 1p(~x), z(1p(~x)) = 0, h(1p(~x)) = (
∑
ai)1p(~x)

and extending via the Leibniz rule.

Proposition 2.7. (i) Any (Rn, sl2)−module structure on Rn where h acts semisimply is isomorphic

to Rn 〈p(~x)〉 for some linear polynomial p(~x).

(ii) We have an isomorphism of sl2 modules,

Rn 〈p(~x)〉 ∼= R1 〈a1〉 ⊗ . . .⊗R1 〈an〉 ∼= ∇(a1)⊗ . . .⊗∇(an)

Example 3. Check that HomSBim(C2,S2)(R2, Bs) = ∇(0)⊗∇(1). Also note that HomSBim(C1,S2)(R1, R1) =

R1
∼= ∇(0) while HomSBim(C2,S2)(R2, R2) = R2

∼= ∇(0)⊗∇(0). As you can see, the sl2 module structure

depends on the rank of the realization used.

Remark. In general, we know that HomSBim(Cn,Sn)(A,B) and in fact Ext•SBim(Cn,Sn)(A,B) are free as

left/right Rn−modules so one might naively hope that as sl2−modules

HomSBim(Cn,Sn)(A,B)
?∼=
⊕⊗

∇(ai1)⊗ . . .∇(ain)

If this were true, one can imagine that by using the sl2 action we can prove a lot of structural properties

in the Soergel category but unfortunately this won’t be true.

3 Filtrations

� (A sl2−category is where sl2 acts on morphism spaces)

� Main Theorem of EQ’22 = categories appearing in type A categorical representation theory are

sl2−categories.

� Any (Rn, sl2)−module structure on Rn is isomorphic to Rn 〈p(~x)〉 ∼= ∇(a1) ⊗ . . . ⊗ ∇(an) where

p(x) =
∑
aixi and d(1p(~x)) = p(~x) · 1p(~x).

� HomSBim(Cn,Sn)(A,B) is free as left/right Rn−module.

(Similarly, last semester Alvaro gave a sketch that ~jR(ν)~i is free as an abelian group following [KL09].

The basis constructed had all dots at the bottom and so the proof also shows that ~jR(ν)~i is free as an

Rk−module, where k = |ν| is the number of strands. Again, the naive hope that morphism spaces is a

direct sum of tensor product of covermas is wrong. HOWEVER, it turns out)

Definition 3.1. Let M be a (Rn, sl2)−module which is free and f.g. as a graded Rn−module so that

M = ⊕i∈IMi where each Mi is free of rank 1 over Rn. ⊕i∈IMi is called a downfree filtration on M if

(1) z preserves each Mi.

(2) ∃ partial order ≤ on I s.t. d(Mi) ⊂ ⊕j≤iMj for all i ∈ I

A homogeneous basis of M as an Rn−module is called downfree if it induces a downfree filtration on

M .
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Remark. Condition (2) above is similar to Sullivan algebras appearing in rational homotopy theory.

Given any poset (I,≤), we can always refine it to a (nonunique) total ordering (I,
?
≤) such that i ≤

j =⇒ i
?
≤ j.

Example 4. The Bruhat order on S3 can be refined to e < s < t < st < ts < sts.

It follows that
⊕
j
?
≤i

Mj are (Rn, sl2) submodules of M that gives a filtration on M with quotients that

are free of rank 1 over Rn.

Definition 3.2. Let M be an (Rn, sl2)−module with a downfree filtration. Each subquotient must be

isomorphic to Rn 〈pi(~x)〉 for a unique pi(~x) ∈ Rn. The multiset of linear polynomials {pi(~x)}i∈I is called

the downfree character of M with respect to the filtration.

Remark. The downfree filtration and character are analogues of the ∆−filtration and characters for

Soergel Bimodules.

Theorem 2 (Real Main Theorem of EQ’22)

The morphism spaces with corresponding poset in the following categories

�

⊕
α∈Q+

An−1

R(α)−mod (Bruhat Order)

� D(Cn, Sn) (LexicoBruhat order on CoTerminal Bruhat Strolls)

are downfree with basis given by (crossings)permutations in S|α| and the double leaves basis, respec-

tively. An explicit computation of their downfree characters is also given.a

aFor double leaves, it’s a decorated version of Deodhar’s formula.

Example 5. We have that HomD(C2,S2)(Bs, Bs) = R2 · ⊕ R2 · with poset < . Compute d

( )
and d

( )
. We therefore have the filtration of (R2, sl2)−modules

0 ⊂ R2 · ⊂ HomD(C2,S2)(Bs, Bs)

is downfree with downfree character {0, x1 + x2} and

R2 · ∼= ∇(0)⊗∇(0), HomD(C2,S2)(Bs, Bs)/R2 · ∼= ∇(1)⊗∇(1)

This filtration actually splits since R2 · is also a sl2 submodule.

Example 6. Let n = 2, then KLR(A1) =
⊕
m≥0

R(mα) ∼=
⊕
m≥0

NHm. We can think of this as a k−linear

monoidal category N by setting • as the generating object with generating morphisms a single crossing

and dots and define NHm = EndN (m,m).The Nilhecke relation
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[Draw]

allows us to slide all dots to the top or to the bottom. As a result there is a left(=top) and right

(=bottom) action of Rm where x1 corresponds to the first strand on top, etc. It is a Theorem of [KL09]

that NHm is free as a left or right Rm−module with basis indexed by permutations in Sm. For example,

NH2 = R2 · id⊕R2 ·X with poset id < X. Define

Now using the NilHecke relation, we have that

We therefore have the filtration of (R2, sl2)−modules

0 ⊂ R2 · id ⊂ NH2

is downfree with downfree character {0,−2x1} and

R2 · id ∼= ∇(0)⊗∇(0), NH2/R2 · id ∼= ∇(−2)⊗∇(0)

and now the filtration doesn’t split.

4 Core

Definition 4.1. Let k be char 0 and Noetherian. Let M be a bounded(weights bounded below, wt spaces

finite rank) weight module for sl2. Let

Core(M) =
{
m ∈M | dN (m) = 0 for N >> 0

}
Then Core(M) will be the maximal submodule of M that is f.g. over k.

Example 7. Core(∇(ai)) = W∨(ai) if ai ≤ 0, otherwise Core(∇(ai)) = 0.

Proposition 4.2. Let p(x) =
∑

aixi ∈ Rn and ai ∈ Z. Then

(i) If ai > 0 for some i, Core(Rn 〈p(x)〉) = 0.

(ii) If ai ≤ 0 ∀i then Core(Rn 〈p(x)〉) ∼= W∨(a1)⊗ · · · ⊗W∨(an)

Proof. (ii) Clearly W∨(a1) ⊗ · · · ⊗W∨(an) ⊆ Core(Rn 〈p(x)〉) by 2nd definition of the core. As ai ≤
0 ∀i, ∇(ai)/W

∨(ai) = ∆(−ai + 2). Therefore Rn 〈p(x)〉 /W∨(a1) ⊗ · · · ⊗W∨(an) has a filtration with

subquotients isomorphic to M ⊗∆(a) for some a. Note dN (v) 6= 0 ∀v ∈ ∆(a). If d has no nilpotents

on the associated graded, then it has no nilpotents on the entire module, and so by the first definition

of the core, Core(Rn 〈p(x)〉 /W∨(a1)⊗ · · · ⊗W∨(an)) = 0 giving the reverse inclusion. �
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4.1 Decompositions

Let gJac(A) be the graded Jacobson radical of an algebra A.

Example 8. gJac(k[x]) = (x). HOWEVER, notice that under the sl2−isomorphism k[x] ∼= ∇(0),

we have that k · 1 ∼= W∨(0), aka the compliment of gJac(k[x]) equals Core(∇(0)). Somehow, the sl2
structure “knows” about the algebra structure.

Definition 4.3. Let C be an additive (graded) category. Given X,Y ∈ C , define

rad(X,Y ) = {f ∈ HomC (X,Y ) | ∀g ∈ HomC (Y,X) idX − gf is invertible in EndC (X)}
= {f ∈ HomC (X,Y ) | ∀g ∈ HomC (Y,X) idY − fg is invertible in EndC (Y )}

Now define the (graded) Jacobson radical of C to be

J ac(C) :=
⊕
X,Y ∈C

rad(X,Y )

Remark. rad(X,X) = gJac(EndC(X,X)).

Conjecture 3

For the categories C above, Core(C ) =
⊕

X,Y ∈C

Core(HomC (X,Y )) intersects J ac(C) trivially.

Corollary 4.4. Assuming Conjecture 3, if B is indecomposable, then any injection i ∈ Core(HomC (B,X))

splits. Similarily with surjections in Core(HomC (X,B)).

Proof. Core(HomC (B,X)) ∩ rad(B,X) = 0 means that ∃g s.t. 1 − g ◦ i is not invertible. B indecom-

posable means End(B) is a local ring and so 1− (1− g ◦ i) = g ◦ i is invertible so i splits. �

Lemma 4.5. Let M be a bounded sl2−representation. Then

Core(M) = ker d+ z · ker d+ z2 · ker d+ . . .

This process terminates in a finite number of steps because M is bounded.

Corollary 4.6. Assuming Conjecture 3, if i ∈ HomC (B,X) is an inclusion(projection) map and d acts

nilpotently on i, then zk(i), dk(i) for k ≥ 2 are also inclusion(projection) maps.

Example 9. In SBim(C2, S2)

Bs ⊗R2 Bs
∼= Bs(−1)⊕Bs(1)

(This underlies Reidemeister II invariance in triply graded link homology) Hom(Bs, BsB
2
s ) has a left

R2 basis given by the double leaves(
εε

η

)
,

(
ε ◦ µ
η

)
,

(
ε id

id

)
,

(
µ

id

)
Let us try to find the core. Applying d to the first 3 maps will create polynomials forever. However,

note that

Compute d( ) and d2( )
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and in fact these are the inclusion maps for Bs(1) and Bs(−1), respectively. For the experts, note that

∆(1) = x1 ⊗s 1− 1⊗s x2 in the gl2 realization of S2.

Warning. The core doesn’t always contain all the inclusion/projection maps!

Example 10. In SBim(C3, S3)

Bs ⊗R3 Bt ⊗R3 Bs
∼= Bsts ⊕Bs

The projection map ps for Bs will be pitchfork. The projection map psts for Bsts will be the Jones-Wenzl

projector. We have that d(ps) = 0, but d(psts) 6= 0 (One needs to define d on thick soergel calculus

first). In fact Core(Hom(BsBtBs, Bsts)) = 0! However,

� d(psts) ∈ Hom(Bs, Bsts) ◦ ps

� Core(Hom(BsBtBs, Bsts)/(Hom(Bs, Bsts) ◦ ps) ) = k · psts

In fact, the opposite is true, namely

� d(ists)(= d(JW ) ◦ JW?) = 0

� d(is) ∈ ists ◦Hom(Bs, Bsts)

� Core(Hom(Bs, BsBtBs)/(ists ◦Hom(Bs, Bsts)) ) = k · is

In general one needs to take iterated cores in order to find enough projection/inclusion maps to split X

into indecomposables.

Definition 4.7. Let C be an sl2−category. The sl2−enriched category Cenrich will be an sl2−category

defined as follows.

� Objects: B � V where B ∈ C and V ∈ Repf.d.sl2

� Morphisms:

HomCenrich
(B � V,B′ � V ′) := HomC(B,B

′)⊗Homsl2(V, V ′)

Remark. There will be a monoidal action of Rep sl2 on Cenrich, where on objects one has

(B � V )⊗ V ′ = B � (V ⊗ V ′)

As a consequence, it follows that the Grothendieck ring K∆(Cenrich) will be a module over K0(Rep sl2) =

k[Z]S2 = k[q+ q−1]. Therefore, given a basis for K∆(Cenrich) over K0(Rep sl2), structure constants will

be unimodal polynomials.
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