Actions of \mathfrak{sl}_2 on algebras appearing in categorifications

Cailan Li September 29th, 2022

1 \mathfrak{sl}_2 -Categories

Theorem 1 (Main Theorem of EQ'22) The following categories

- $\bigoplus_{\alpha \in Q^+_{A_{n-1}}} R(\alpha) \mod (Cat \text{ of } U^+_q(\mathfrak{gl}_n))$
- $\mathcal{U}(\mathfrak{sl}_2)$ (Cat of $U_q(\mathfrak{sl}_2)$)
- $\mathscr{D}(\mathbb{C}^n, S_n)$ ($\cong \mathbb{S}Bim(\mathbb{C}^n, S_n)$ in char 0) (Cat of $H_q(S_n)$)

have the structure of a monoidal \mathfrak{sl}_2 -cat.

Definition 1.1. Let \Bbbk be a commutative domain and \mathfrak{g} a lie algebra over \Bbbk . A \mathfrak{g} -algebra is a \Bbbk -algebra A with an action of \mathfrak{g} by derivations. We will write (A, \mathfrak{g}) for this structure.

Example 1. Let $A = R_n = \Bbbk[x_1, \ldots, x_n]$ where deg $(x_i) = 2$ and let $\mathfrak{g} = \mathfrak{sl}_2 = \{d = e, h, -z = f\}$. Then

$$d = \sum_{i} x_{i}^{2} \frac{\partial}{\partial x_{i}}, \qquad h \cdot p(x) = \deg(p(x))p(x), \qquad z = \sum_{i} \frac{\partial}{\partial x_{i}}$$

gives A the structure of a \mathfrak{g} -algebra (note that the weight grading agrees with the usual grading by construction). Note this is equivalent to $d(x_i) = x_i^2$ and $z(x_i) = 1 \forall i$ and extending by Leibniz rule.

Definition 1.2. Let \Bbbk be a commutative domain and \mathfrak{g} a lie algebra over \Bbbk . A \mathfrak{g} -category \mathscr{C} is a category with an action of \mathfrak{g} on the morphism spaces such that composition of morphisms

 $\operatorname{Hom}_{\mathscr{C}}(A, B) \otimes \operatorname{Hom}_{\mathscr{C}}(B, C) \to \operatorname{Hom}_{\mathscr{C}}(A, C)$

is a morphism of \mathfrak{sl}_2 -modules. A monoidal \mathfrak{g} -category is a \mathfrak{g} -category which is also monoidal s.t.

$$x(f \otimes g) = x(f) \otimes g + f \otimes x(g)$$

(Note that composition of morphisms being a morphism of \mathfrak{sl}_2 -modules is the same as above but with \otimes replaced by \circ .)

Example 2. Let $\mathscr{C} = \mathscr{D}(\mathbb{C}^2, S_2)$ and $\mathfrak{g} = \mathfrak{sl}_2 = \{d = e, h, -z = f\}$. Hom spaces of \mathscr{C} are monoidally generated by [draw trivalent and dots] as free R_2 -modules. Define

and $h(\varphi) = \deg(\varphi)\varphi$. (Thus, the weight grading on the hom spaces agrees with the usual grading) For R_2 , \mathfrak{sl}_2 acts on R_2 as above. To check that this indeed gives an action of \mathfrak{sl}_2 , we need to check two things.

- (1) d, h, -z preserves the generating relations of $\mathscr{D}(\mathbb{C}^2, S_2)$
- (2) d, h, -z satisfies the relations of \mathfrak{sl}_2 when applied to the generating morphisms.

Let us check the barbell relation. [Do computation]. To check that d, h, -z satisfies the relations of \mathfrak{sl}_2 , d, z move us into the correct weight space by construction so we only need to check [d, -z] = h. z kills any diagram without polynomials and so we only need to check

$$z(d(\phi)) = h(\phi) = \deg(\phi)\phi$$

where ϕ is a generating morphism which we leave as an exercise.

Remark. The notion of a \mathfrak{g} -algebra and a \mathfrak{g} -category can be viewed as analogues of dg-algebras and dg-categories where the former uses the hopf algebra $U(\mathfrak{sl}_2)$ while the latter uses the hopf algebra $\mathbb{k}[d]/(d^2)$.

(We want to now decompose hom spaces in the Soergel category as \mathfrak{sl}_2 representations, so we will now introduce the representations that show up.)

2 Representations of polynomial sl₂-algebras

2.1 Lowest Weight Vermas and CoVermas

Definition 2.1. Again let k be a commutative domain. Given $k \in k$, define the \mathfrak{sl}_2 modules (write $v_{k,0}$ instead of 0 for verma and $w_{k,0}$ for the coverma)

$$\Delta(k): \underbrace{\mathbf{d}=1}_{\mathbf{z}=k} \underbrace{\mathbf{d}=2}_{\mathbf{z}=k+1} \cdots \underbrace{\mathbf{d}=m-1}_{\mathbf{z}=k+m-2} \underbrace{\mathbf{d}=m}_{\mathbf{m}-1} \underbrace{\mathbf{d}=m}_{\mathbf{z}=k+m-1} \underbrace{\mathbf{d}=m+1}_{\mathbf{z}=k+m} \cdots \underbrace{\mathbf{d}=m+1}_{\mathbf{z}=k+m-1} \cdots \underbrace{\mathbf{d}=m+1}_{\mathbf{z}=k+m-1} \cdots \underbrace{\mathbf{d}=m+1}_{\mathbf{z}=k+m-1} \underbrace{\mathbf{d}=m+1}_{\mathbf{z}=k+m-1} \cdots \underbrace{\mathbf{d}=m+1}_{\mathbf{z}=k+m-1} \cdots \underbrace{\mathbf{d}=k+m-1}_{\mathbf{z}=m} \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m-1}_{\mathbf{z}=m} \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m-1}_{\mathbf{z}=m} \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m-1}_{\mathbf{z}=m} \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m-1}_{\mathbf{z}=m} \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m-1}_{\mathbf{z}=m} \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m-1}_{\mathbf{z}=m} \underbrace{\mathbf{d}=k+m}_{\mathbf{z}=m+1} \cdots \underbrace{\mathbf{d}=k+m}_{\mathbf{z$$

(draw in action of $h(v_{k,m}) = (k+2m)v_{k,m}$) These are the lowest weight verma and coverma modules.

Proposition 2.2 (Properties). (i) $\Delta(k), \nabla(k)$ are indecomposable for all $k \in \mathbb{Z}$.

- (ii) If k > 0, $\Delta(k)$, $\nabla(k)$ are simple.
- (iii) If $k \leq 0$ we have SES

$$0 \to \nabla(-k+2) \to \Delta(k) \to W(k) \to 0$$
$$0 \to W^{\vee}(k) \to \nabla(k) \to \Delta(-k+2) \to 0$$

where $W(k), W^{\vee}(k)$ are the Weyl and dual Weyl modules (Both equal L_k over \mathbb{Q}).

(iv) If k contains \mathbb{Q} then $\Delta(k) \cong \nabla(k) \iff k > 0$. Otherwise $\nabla(k) \cong \Delta(k) \iff k = 1$.

Proof. (*iii*) Note that $-k+2 = s \bullet_{-\rho} k$, draw out when m = -k+2 for $\Delta(k)$. One might have expected that $\nabla(-k+2)$ and $\Delta(-k+2)$ swap places (this is what happens in category \mathcal{O} for instance) but integrally by part (*iv*), $\nabla(-k+2) \neq \Delta(-k+2)$ most of the time.

2.2 Rank-one modules over polynomial rings

Recall that $R_1 = \Bbbk[x]$ and $d = x^2 \frac{\partial}{\partial x}$ and $z = \frac{\partial}{\partial z}$

Proposition 2.3. $R_1 \cong \nabla(0)$ as $\mathfrak{sl}_2 - \mathrm{mod}$

Proof. $w_{0,m} \mapsto x^m$ is a clear bijection. Note that the action of d, z on $\nabla(0)$ is given by

$$d(w_{0,m}) = mw_{k,m+1} \qquad z(w_{0,m+1}) = (m+1)w_{0,m}$$

which exactly matches with $d(x^m) = mx^{m+1}, z(x^{m+1}) = (m+1)x^m$.

Definition 2.4. Let $a \in \mathbb{k}$ and let $R_1 \langle a \rangle$ =free graded rank 1 R_1 module with generator 1_a . Define a (R_1, \mathfrak{sl}_2) module structure on $R_1 \langle a \rangle$ via

$$d(1_a) = ax \cdot 1_a, \qquad z(1_a) = 0, \qquad h(1_a) = a1_a$$

and extending to all of $R_1 \langle a \rangle$ by the Leibniz rule.

- **Proposition 2.5.** (i) Any (R_1, \mathfrak{sl}_2) -module structure on R_1 where h acts semisimply is isomorphic to $R_1 \langle a \rangle$ for a unique $a \in \mathbb{k}$.
 - (ii) We have an isomorphism $R_1 \langle a \rangle \cong \nabla(a)$ of \mathfrak{sl}_2 modules.

Proof. (i) Let M be free of rank 1 over R_1 with generator v. v is in lowest degree(weight). We know that hv = cv for some $c \in \mathbb{k}$ by the semisimple condition. Now because the only way to increase the weight by 2 is to multiply by x, we must have that $d(v) = c'x \cdot v$ for some $c' \in \mathbb{k}$ and similarly z(v) = 0. Now applying [d, -z] = h to v we have

$$cv = h(v) = (-dz + zd)(v) = z(c'x \cdot v) = c'v$$

and thus c = c' and so the action of d, z, h matches with $R_1 \langle a \rangle$ above. (*ii*) Left as an exercise to show that $x^m \cdot 1_a \mapsto w_{a,m}$ gives iso. **Definition 2.6.** Let $p(\vec{x}) = \sum_{n \in I} a_i x_i$ be a <u>linear</u> polynomial in R_n and let $R_n \langle p(\vec{x}) \rangle =$ free graded rank 1 R_n -module with generator $1_{p(\vec{x})}$. Define a (R_n, \mathfrak{sl}_2) module structure on $R_n \langle a \rangle$ via

 $d(1_{p(\vec{x})}) = p(\vec{x}) \cdot 1_{p(\vec{x})}, \qquad z(1_{p(\vec{x})}) = 0, \qquad h(1_{p(\vec{x})}) = (\sum a_i) 1_{p(\vec{x})}$

and extending via the Leibniz rule.

- **Proposition 2.7.** (i) Any (R_n, \mathfrak{sl}_2) -module structure on R_n where h acts semisimply is isomorphic to $R_n \langle p(\vec{x}) \rangle$ for some linear polynomial $p(\vec{x})$.
 - (ii) We have an isomorphism of \mathfrak{sl}_2 modules,

$$R_n \langle p(\vec{x}) \rangle \cong R_1 \langle a_1 \rangle \otimes \ldots \otimes R_1 \langle a_n \rangle \cong \nabla(a_1) \otimes \ldots \otimes \nabla(a_n)$$

Example 3. Check that $\operatorname{Hom}_{\mathbb{S}Bim(\mathbb{C}^2,S_2)}(R_2,B_s) = \nabla(0) \otimes \nabla(1)$. Also note that $\operatorname{Hom}_{\mathbb{S}Bim(\mathbb{C}^1,S_2)}(R_1,R_1) = R_1 \cong \nabla(0)$ while $\operatorname{Hom}_{\mathbb{S}Bim(\mathbb{C}^2,S_2)}(R_2,R_2) = R_2 \cong \nabla(0) \otimes \nabla(0)$. As you can see, the \mathfrak{sl}_2 module structure depends on the rank of the realization used.

Remark. In general, we know that $\operatorname{Hom}_{\mathbb{S}Bim(\mathbb{C}^n,S_n)}(A,B)$ and in fact $\operatorname{Ext}^{\bullet}_{\mathbb{S}Bim(\mathbb{C}^n,S_n)}(A,B)$ are free as left/right R_n -modules so one might naively hope that as \mathfrak{sl}_2 -modules

$$\operatorname{Hom}_{\mathbb{S}Bim(\mathbb{C}^n,S_n)}(A,B) \stackrel{?}{\cong} \bigoplus \bigotimes \nabla(a_{i_1}) \otimes \ldots \nabla(a_{i_n})$$

If this were true, one can imagine that by using the \mathfrak{sl}_2 action we can prove a lot of structural properties in the Soergel category but unfortunately this won't be true.

3 Filtrations

- (A \mathfrak{sl}_2 -category is where \mathfrak{sl}_2 acts on morphism spaces)
- Main Theorem of EQ'22 = categories appearing in type A categorical representation theory are \mathfrak{sl}_2 -categories.
- Any (R_n, \mathfrak{sl}_2) -module structure on R_n is isomorphic to $R_n \langle p(\vec{x}) \rangle \cong \nabla(a_1) \otimes \ldots \otimes \nabla(a_n)$ where $p(x) = \sum a_i x_i$ and $d(1_{p(\vec{x})}) = p(\vec{x}) \cdot 1_{p(\vec{x})}$.
- Hom_{SBim(\mathbb{C}^n, S_n)}(A, B) is free as left/right R_n -module.

(Similarly, last semester Alvaro gave a sketch that $_{\vec{j}}R(\nu)_{\vec{i}}$ is free as an abelian group following [KL09]. The basis constructed had all dots at the bottom and so the proof also shows that $_{\vec{j}}R(\nu)_{\vec{i}}$ is free as an R_k -module, where $k = |\nu|$ is the number of strands. Again, the naive hope that morphism spaces is a direct sum of tensor product of covermas is wrong. HOWEVER, it turns out)

Definition 3.1. Let M be a (R_n, \mathfrak{sl}_2) -module which is free and f.g. as a graded R_n -module so that $M = \bigoplus_{i \in I} M_i$ where each M_i is free of rank 1 over R_n . $\bigoplus_{i \in I} M_i$ is called a downfree filtration on M if

- (1) z preserves each M_i .
- (2) $\exists \text{ partial order} \leq \text{ on } I \text{ s.t. } d(M_i) \subset \bigoplus_{j \leq i} M_j \text{ for all } i \in I$

A homogeneous basis of M as an R_n -module is called downfree if it induces a downfree filtration on M.

Remark. Condition (2) above is similar to Sullivan algebras appearing in rational homotopy theory.

Given any poset (I, \leq) , we can always refine it to a (nonunique) total ordering (I, \leq) such that $i \leq i$ $j \implies i \leq j.$

Example 4. The Bruhat order on S_3 can be refined to e < s < t < st < ts < sts.

It follows that $\bigoplus M_j$ are (R_n, \mathfrak{sl}_2) submodules of M that gives a filtration on M with quotients that

are free of rank $\overline{1}$ over R_n .

Definition 3.2. Let M be an (R_n, \mathfrak{sl}_2) -module with a downfree filtration. Each subquotient must be isomorphic to $R_n \langle p_i(\vec{x}) \rangle$ for a unique $p_i(\vec{x}) \in R_n$. The multiset of linear polynomials $\{p_i(\vec{x})\}_{i \in I}$ is called the downfree character of M with respect to the filtration.

Remark. The downfree filtration and character are analogues of the Δ -filtration and characters for Soergel Bimodules.

Theorem 2 (Real Main Theorem of EQ'22) The morphism spaces with corresponding poset in the following categories

- $\bigoplus R(\alpha) mod (Bruhat Order)$ $\alpha \in Q^+_{A_{n-1}}$
- $\mathscr{D}(\mathbb{C}^n, S_n)$ (LexicoBruhat order on CoTerminal Bruhat Strolls)

are downfree with basis given by (crossings) permutations in $S_{|\alpha|}$ and the double leaves basis, respectively. An explicit computation of their downfree characters is also given.^a

^aFor double leaves, it's a decorated version of Deodhar's formula.

Example 5. We have that $\operatorname{Hom}_{\mathscr{D}(\mathbb{C}^2,S_2)}(B_s,B_s) = R_2 \cdot \bigoplus R_2 \cdot$

and $d\left(\begin{array}{c} \bullet\\ \bullet\end{array}\right)$. We therefore have the filtration of (R_2,\mathfrak{sl}_2) -modules

$$0 \subset R_2 \cdot \subset \operatorname{Hom}_{\mathscr{D}(\mathbb{C}^2, S_2)}(B_s, B_s)$$

is downfree with downfree character $\{0, x_1 + x_2\}$ and

$$R_2 \cdot \cong \nabla(0) \otimes \nabla(0), \qquad \qquad \operatorname{Hom}_{\mathscr{D}(\mathbb{C}^2, S_2)}(B_s, B_s)/R_2 \cdot \cong \nabla(1) \otimes \nabla(1)$$

This filtration actually splits since $R_2 \cdot =$ is also a \mathfrak{sl}_2 submodule.

Example 6. Let n = 2, then $KLR(A_1) = \bigoplus_{m \ge 0} R(m\alpha) \cong \bigoplus_{m \ge 0} NH_m$. We can think of this as a k-linear monoidal category ${\mathcal N}$ by setting \bullet as the generating object with generating morphisms a single crossing and dots and define $NH_m = \operatorname{End}_{\mathscr{N}}(m, m)$. The Nilhecke relation

[Draw]

allows us to slide all dots to the top or to the bottom. As a result there is a left(=top) and right (=bottom) action of R_m where x_1 corresponds to the first strand on top, etc. It is a Theorem of [KL09] that NH_m is free as a left or right R_m -module with basis indexed by permutations in S_m . For example, $NH_2 = R_2 \cdot id \oplus R_2 \cdot X$ with poset id $\langle X$. Define

Now using the NilHecke relation, we have that

We therefore have the filtration of (R_2, \mathfrak{sl}_2) -modules

$$0 \subset R_2 \cdot \mathrm{id} \subset NH_2$$

is downfree with downfree character $\{0, -2x_1\}$ and

$$R_2 \cdot \mathrm{id} \cong \nabla(0) \otimes \nabla(0), \qquad \qquad NH_2/R_2 \cdot \mathrm{id} \cong \nabla(-2) \otimes \nabla(0)$$

and now the filtration doesn't split.

4 Core

Definition 4.1. Let \Bbbk be char 0 and Noetherian. Let M be a bounded (weights bounded below, wt spaces finite rank) weight module for \mathfrak{sl}_2 . Let

$$Core(M) = \{ m \in M \, | \, d^N(m) = 0 \text{ for } N >> 0 \}$$

Then $\operatorname{Core}(M)$ will be the maximal submodule of M that is f.g. over \Bbbk .

Example 7. Core $(\nabla(a_i)) = W^{\vee}(a_i)$ if $a_i \leq 0$, otherwise Core $(\nabla(a_i)) = 0$.

Proposition 4.2. Let $p(x) = \sum a_i x_i \in R_n$ and $a_i \in \mathbb{Z}$. Then

(i) If $a_i > 0$ for some i, $\operatorname{Core}(R_n \langle p(x) \rangle) = 0$.

(*ii*) If $a_i \leq 0 \ \forall i \ then \ Core(R_n \langle p(x) \rangle) \cong W^{\vee}(a_1) \otimes \cdots \otimes W^{\vee}(a_n)$

Proof. (ii) Clearly $W^{\vee}(a_1) \otimes \cdots \otimes W^{\vee}(a_n) \subseteq \operatorname{Core}(R_n \langle p(x) \rangle)$ by 2nd definition of the core. As $a_i \leq 0 \ \forall i, \nabla(a_i)/W^{\vee}(a_i) = \Delta(-a_i+2)$. Therefore $R_n \langle p(x) \rangle /W^{\vee}(a_1) \otimes \cdots \otimes W^{\vee}(a_n)$ has a filtration with subquotients isomorphic to $M \otimes \Delta(a)$ for some a. Note $d^N(v) \neq 0 \ \forall v \in \Delta(a)$. If d has no nilpotents on the associated graded, then it has no nilpotents on the entire module, and so by the first definition of the core, $\operatorname{Core}(R_n \langle p(x) \rangle /W^{\vee}(a_1) \otimes \cdots \otimes W^{\vee}(a_n)) = 0$ giving the reverse inclusion.

4.1 Decompositions

Let gJac(A) be the graded Jacobson radical of an algebra A.

Example 8. $gJac(\Bbbk[x]) = (x)$. HOWEVER, notice that under the \mathfrak{sl}_2 -isomorphism $\Bbbk[x] \cong \nabla(0)$, we have that $\Bbbk \cdot 1 \cong W^{\vee}(0)$, aka the compliment of $gJac(\Bbbk[x])$ equals $Core(\nabla(0))$. Somehow, the \mathfrak{sl}_2 structure "knows" about the algebra structure.

Definition 4.3. Let \mathscr{C} be an additive (graded) category. Given $X, Y \in \mathscr{C}$, define

 $\operatorname{rad}(X,Y) = \{ f \in \operatorname{Hom}_{\mathscr{C}}(X,Y) \mid \forall g \in \operatorname{Hom}_{\mathscr{C}}(Y,X) \ \operatorname{id}_X - gf \ \text{is invertible in } \operatorname{End}_{\mathscr{C}}(X) \} \\ = \{ f \in \operatorname{Hom}_{\mathscr{C}}(X,Y) \mid \forall g \in \operatorname{Hom}_{\mathscr{C}}(Y,X) \ \operatorname{id}_Y - fg \ \text{is invertible in } \operatorname{End}_{\mathscr{C}}(Y) \}$

Now define the (graded) Jacobson radical of C to be

$$\mathscr{J}ac(\mathcal{C}) := \bigoplus_{X,Y \in \mathcal{C}} \operatorname{rad}(X,Y)$$

Remark. rad $(X, X) = gJac(End_{\mathcal{C}}(X, X)).$

 $\begin{array}{l} \textbf{Conjecture 3} \\ \text{For the categories } \mathscr{C} \text{ above, } \text{Core}(\mathscr{C}) = \bigoplus_{X,Y \in \mathscr{C}} \text{Core}(\text{Hom}_{\mathscr{C}}(X,Y)) \text{ intersects } \mathscr{J}ac(\mathcal{C}) \text{ trivially.} \end{array}$

Corollary 4.4. Assuming Conjecture 3, if B is indecomposable, then any injection $i \in \text{Core}(\text{Hom}_{\mathscr{C}}(B, X))$ splits. Similarly with surjections in $\text{Core}(\text{Hom}_{\mathscr{C}}(X, B))$.

Proof. Core(Hom_{\mathscr{C}}(B,X)) \cap rad(B,X) = 0 means that $\exists g \text{ s.t. } 1 - g \circ i \text{ is not invertible. } B$ indecomposable means End(B) is a local ring and so $1 - (1 - g \circ i) = g \circ i$ is invertible so i splits.

Lemma 4.5. Let M be a bounded \mathfrak{sl}_2 -representation. Then

$$\operatorname{Core}(M) = \ker d + z \cdot \ker d + z^2 \cdot \ker d + \dots$$

This process terminates in a finite number of steps because M is bounded.

Corollary 4.6. Assuming Conjecture 3, if $i \in \text{Hom}_{\mathscr{C}}(B, X)$ is an inclusion(projection) map and d acts nilpotently on i, then $z^k(i), d^k(i)$ for $k \geq 2$ are also inclusion(projection) maps.

Example 9. In $SBim(\mathbb{C}^2, S_2)$

$$B_s \otimes_{R_2} B_s \cong B_s(-1) \oplus B_s(1)$$

(This underlies Reidemeister II invariance in triply graded link homology) $\text{Hom}(B_s, B_s B_s^2)$ has a left R_2 basis given by the double leaves

$$\begin{pmatrix} \epsilon \epsilon \\ \eta \end{pmatrix}, \begin{pmatrix} \epsilon \circ \mu \\ \eta \end{pmatrix}, \begin{pmatrix} \epsilon & id \\ id \end{pmatrix}, \begin{pmatrix} \mu \\ id \end{pmatrix}$$

Let us try to find the core. Applying d to the first 3 maps will create polynomials forever. However, note that

Compute
$$d(\checkmark)$$
 and $d^2(\checkmark)$

and in fact these are the inclusion maps for $B_s(1)$ and $B_s(-1)$, respectively. For the experts, note that $\Delta(1) = x_1 \otimes_s 1 - 1 \otimes_s x_2$ in the \mathfrak{gl}_2 realization of S_2 .

Warning. The core doesn't always contain all the inclusion/projection maps!

Example 10. In $\mathbb{S}Bim(\mathbb{C}^3, S_3)$

$$B_s \otimes_{R_3} B_t \otimes_{R_3} B_s \cong B_{sts} \oplus B_s$$

The projection map p_s for B_s will be pitchfork. The projection map p_{sts} for B_{sts} will be the Jones-Wenzl projector. We have that $d(p_s) = 0$, but $d(p_{sts}) \neq 0$ (One needs to define d on thick soergel calculus first). In fact Core(Hom($B_s B_t B_s, B_{sts}$)) = 0! However,

- $d(p_{sts}) \in \operatorname{Hom}(B_s, B_{sts}) \circ p_s$
- Core(Hom($B_sB_tB_s, B_{sts})/(Hom(B_s, B_{sts}) \circ p_s)) = \mathbb{k} \cdot p_{sts}$

In fact, the opposite is true, namely

- $d(i_{sts})(=d(JW) \circ JW?) = 0$
- $d(i_s) \in i_{sts} \circ \operatorname{Hom}(B_s, B_{sts})$
- $\operatorname{Core}(\operatorname{Hom}(B_s, B_s B_t B_s) / (i_{sts} \circ \operatorname{Hom}(B_s, B_{sts})))) = \mathbb{k} \cdot i_s$

In general one needs to take <u>iterated cores</u> in order to find enough projection/inclusion maps to split X into indecomposables.

Definition 4.7. Let C be an \mathfrak{sl}_2 -category. The \mathfrak{sl}_2 -enriched category C_{enrich} will be an \mathfrak{sl}_2 -category defined as follows.

- Objects: $B \boxtimes V$ where $B \in \mathcal{C}$ and $V \in \operatorname{Rep}_{f.d.}\mathfrak{sl}_2$
- Morphisms:

$$\operatorname{Hom}_{\mathcal{C}_{enrich}}(B\boxtimes V, B'\boxtimes V'):=\operatorname{Hom}_{\mathcal{C}}(B, B')\otimes \operatorname{Hom}_{\mathfrak{sl}_2}(V, V')$$

Remark. There will be a monoidal action of Rep \mathfrak{sl}_2 on \mathcal{C}_{enrich} , where on objects one has

$$(B \boxtimes V) \otimes V' = B \boxtimes (V \otimes V')$$

As a consequence, it follows that the Grothendieck ring $K_{\Delta}(\mathcal{C}_{enrich})$ will be a module over $K_0(\text{Rep }\mathfrak{sl}_2) = \mathbb{k}[\mathbb{Z}]^{S_2} = \mathbb{k}[q+q^{-1}]$. Therefore, given a basis for $K_{\Delta}(\mathcal{C}_{enrich})$ over $K_0(\text{Rep }\mathfrak{sl}_2)$, structure constants will be unimodal polynomials.