Actions of $\mathfrak{s l}_{2}$ on algebras appearing in categorifications

Cailan Li

September 29th, 2022

$1 \mathfrak{s l}_{2}$-Categories

Theorem 1 (Main Theorem of EQ'22)
The following categories

- $\bigoplus_{\alpha \in Q_{A_{n-1}}^{+}} R(\alpha)-\bmod \left(\right.$ Cat of $\left.U_{q}^{+}\left(\mathfrak{g l} l_{n}\right)\right)$
- $\dot{\mathcal{U}}\left(\mathfrak{s l}_{2}\right)$ (Cat of $U_{q}\left(\mathfrak{s l}_{2}\right)$)
- $\mathscr{D}\left(\mathbb{C}^{n}, S_{n}\right)\left(\cong \mathbb{S B i m}\left(\mathbb{C}^{n}, S_{n}\right)\right.$ in char 0$)\left(\right.$ Cat of $\left.H_{q}\left(S_{n}\right)\right)$
have the structure of a monoidal $\mathfrak{s l}_{2}-$ cat.

Definition 1.1. Let \mathfrak{k} be a commutative domain and \mathfrak{g} a lie algebra over \mathfrak{k}. $A \mathfrak{g}$-algebra is a \mathfrak{k}-algebra A with an action of \mathfrak{g} by derivations. We will write (A, \mathfrak{g}) for this structure.

Example 1. Let $A=R_{n}=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ where $\operatorname{deg}\left(x_{i}\right)=2$ and let $\mathfrak{g}=\mathfrak{s l}_{2}=\{d=e, h,-z=f\}$. Then

$$
d=\sum_{i} x_{i}^{2} \frac{\partial}{\partial x_{i}}, \quad h \cdot p(x)=\operatorname{deg}(p(x)) p(x), \quad z=\sum_{i} \frac{\partial}{\partial x_{i}}
$$

gives A the structure of a \mathfrak{g}-algebra (note that the weight grading agrees with the usual grading by construction). Note this is equivalent to $d\left(x_{i}\right)=x_{i}^{2}$ and $z\left(x_{i}\right)=1 \forall i$ and extending by Leibniz rule.

Definition 1.2. Let \mathbb{k} be a commutative domain and \mathfrak{g} a lie algebra over \mathbb{k}. A \mathfrak{g}-category \mathscr{C} is a category with an action of \mathfrak{g} on the morphism spaces such that composition of morphisms

$$
\operatorname{Hom}_{\mathscr{C}}(A, B) \otimes \operatorname{Hom}_{\mathscr{C}}(B, C) \rightarrow \operatorname{Hom}_{\mathscr{C}}(A, C)
$$

is a morphism of $\mathfrak{s l}_{2}$-modules. A monoidal \mathfrak{g}-category is a \mathfrak{g}-category which is also monoidal s.t.

$$
x(f \otimes g)=x(f) \otimes g+f \otimes x(g)
$$

(Note that composition of morphisms being a morphism of $\mathfrak{s l}_{2}$-modules is the same as above but with \otimes replaced by o.)

Example 2. Let $\mathscr{C}=\mathscr{D}\left(\mathbb{C}^{2}, S_{2}\right)$ and $\mathfrak{g}=\mathfrak{s l}_{2}=\{d=e, h,-z=f\}$. Hom spaces of \mathscr{C} are monoidally generated by [draw trivalent and dots] as free $R_{2}-$ modules. Define

and $h(\varphi)=\operatorname{deg}(\varphi) \varphi$. (Thus, the weight grading on the hom spaces agrees with the usual grading) For $R_{2}, \mathfrak{s l}_{2}$ acts on R_{2} as above. To check that this indeed gives an action of $\mathfrak{s l}_{2}$, we need to check two things.
(1) $d, h,-z$ preserves the generating relations of $\mathscr{D}\left(\mathbb{C}^{2}, S_{2}\right)$
(2) $d, h,-z$ satisfies the relations of $\mathfrak{s l}_{2}$ when applied to the generating morphisms.

Let us check the barbell relation. [Do computation]. To check that $d, h,-z$ satisfies the relations of $\mathfrak{s l}_{2}$, d, z move us into the correct weight space by construction so we only need to check $[d,-z]=h . z$ kills any diagram without polynomials and so we only need to check

$$
z(d(\phi))=h(\phi)=\operatorname{deg}(\phi) \phi
$$

where ϕ is a generating morphism which we leave as an exercise.
Remark. The notion of a \mathfrak{g}-algebra and a \mathfrak{g}-category can be viewed as analogues of dg-algebras and dg-categories where the former uses the hopf algebra $U\left(\mathfrak{s l}_{2}\right)$ while the latter uses the hopf algebra $\mathbb{k}[d] /\left(d^{2}\right)$.
(We want to now decompose hom spaces in the Soergel category as $\mathfrak{s l}_{2}$ representations, so we will now introduce the representations that show up.)

2 Representations of polynomial $\mathfrak{s l}_{2}$-algebras

2.1 Lowest Weight Vermas and CoVermas

Definition 2.1. Again let \mathbb{k} be a commutative domain. Given $k \in \mathbb{k}$, define the $\mathfrak{s l}_{2}$ modules (write $v_{k, 0}$ instead of 0 for verma and $w_{k, 0}$ for the coverma)

(draw in action of $\left.h\left(v_{k, m}\right)=(k+2 m) v_{k, m}\right)$ These are the lowest weight verma and coverma modules.
Proposition 2.2 (Properties). (i) $\Delta(k), \nabla(k)$ are indecomposable for all $k \in \mathbb{Z}$.
(ii) If $k>0, \Delta(k), \nabla(k)$ are simple.
(iii) If $k \leq 0$ we have $S E S$

$$
\begin{gathered}
0 \rightarrow \nabla(-k+2) \rightarrow \Delta(k) \rightarrow W(k) \rightarrow 0 \\
0 \rightarrow W^{\vee}(k) \rightarrow \nabla(k) \rightarrow \Delta(-k+2) \rightarrow 0
\end{gathered}
$$

where $W(k), W^{\vee}(k)$ are the Weyl and dual Weyl modules (Both equal L_{k} over $\left.\mathbb{Q}\right)$.
(iv) If \mathbb{k} contains \mathbb{Q} then $\Delta(k) \cong \nabla(k) \Longleftrightarrow k>0$. Otherwise $\nabla(k) \cong \Delta(k) \Longleftrightarrow k=1$.

Proof. (iii) Note that $-k+2=s \bullet_{-\rho} k$, draw out when $m=-k+2$ for $\Delta(k)$. One might have expected that $\nabla(-k+2)$ and $\Delta(-k+2)$ swap places (this is what happens in category \mathcal{O} for instance) but integrally by part $(i v), \nabla(-k+2) \neq \Delta(-k+2)$ most of the time.

2.2 Rank-one modules over polynomial rings

Recall that $R_{1}=\mathbb{k}[x]$ and $d=x^{2} \frac{\partial}{\partial x}$ and $z=\frac{\partial}{\partial z}$
Proposition 2.3. $R_{1} \cong \nabla(0)$ as $\mathfrak{s l}_{2}-\bmod$
Proof. $w_{0, m} \mapsto x^{m}$ is a clear bijection. Note that the action of d, z on $\nabla(0)$ is given by

$$
d\left(w_{0, m}\right)=m w_{k, m+1} \quad z\left(w_{0, m+1}\right)=(m+1) w_{0, m}
$$

which exactly matches with $d\left(x^{m}\right)=m x^{m+1}, z\left(x^{m+1}\right)=(m+1) x^{m}$.
Definition 2.4. Let $a \in \mathbb{k}$ and let $R_{1}\langle a\rangle=$ free graded rank $1 R_{1}$ module with generator 1_{a}. Define a $\left(R_{1}, \mathfrak{s l}_{2}\right)$ module structure on $R_{1}\langle a\rangle$ via

$$
d\left(1_{a}\right)=a x \cdot 1_{a}, \quad z\left(1_{a}\right)=0, \quad h\left(1_{a}\right)=a 1_{a}
$$

and extending to all of $R_{1}\langle a\rangle$ by the Leibniz rule.
Proposition 2.5. (i) Any $\left(R_{1}, \mathfrak{s l}_{2}\right)$-module structure on R_{1} where h acts semisimply is isomorphic to $R_{1}\langle a\rangle$ for a unique $a \in \mathbb{k}$.
(ii) We have an isomorphism $R_{1}\langle a\rangle \cong \nabla(a)$ of $\mathfrak{s l}_{2}$ modules.

Proof. (i) Let M be free of rank 1 over R_{1} with generator $v . v$ is in lowest degree(weight). We know that $h v=c v$ for some $c \in \mathbb{k}$ by the semisimple condition. Now because the only way to increase the weight by 2 is to multiply by x, we must have that $d(v)=c^{\prime} x \cdot v$ for some $c^{\prime} \in \mathbb{k}$ and similarly $z(v)=0$. Now applying $[d,-z]=h$ to v we have

$$
c v=h(v)=(-d z+z d)(v)=z\left(c^{\prime} x \cdot v\right)=c^{\prime} v
$$

and thus $c=c^{\prime}$ and so the action of d, z, h matches with $R_{1}\langle a\rangle$ above.
(ii) Left as an exercise to show that $x^{m} \cdot 1_{a} \mapsto w_{a, m}$ gives iso.

Definition 2.6. Let $p(\vec{x})=\sum a_{i} x_{i}$ be a linear polynomial in R_{n} and let $R_{n}\langle p(\vec{x})\rangle=$ free graded rank

$$
d\left(1_{p(\vec{x})}\right)=p(\vec{x}) \cdot 1_{p(\vec{x})}, \quad z\left(1_{p(\vec{x})}\right)=0, \quad h\left(1_{p(\vec{x})}\right)=\left(\sum a_{i}\right) 1_{p(\vec{x})}
$$

and extending via the Leibniz rule.
Proposition 2.7. (i) Any $\left(R_{n}, \mathfrak{s l}_{2}\right)$-module structure on R_{n} where h acts semisimply is isomorphic to $R_{n}\langle p(\vec{x})\rangle$ for some linear polynomial $p(\vec{x})$.
(ii) We have an isomorphism of $\mathfrak{s l}_{2}$ modules,

$$
R_{n}\langle p(\vec{x})\rangle \cong R_{1}\left\langle a_{1}\right\rangle \otimes \ldots \otimes R_{1}\left\langle a_{n}\right\rangle \cong \nabla\left(a_{1}\right) \otimes \ldots \otimes \nabla\left(a_{n}\right)
$$

Example 3. Check that $\operatorname{Hom}_{\mathbb{S B i m}\left(\mathbb{C}^{2}, S_{2}\right)}\left(R_{2}, B_{s}\right)=\nabla(0) \otimes \nabla(1)$. Also note that $\operatorname{Hom}_{\mathbb{S B i m}\left(\mathbb{C}^{1}, S_{2}\right)}\left(R_{1}, R_{1}\right)=$ $R_{1} \cong \nabla(0)$ while $\operatorname{Hom}_{\mathbb{S B i m}\left(\mathbb{C}^{2}, S_{2}\right)}\left(R_{2}, R_{2}\right)=R_{2} \cong \nabla(0) \otimes \nabla(0)$. As you can see, the $\mathfrak{s l}_{2}$ module structure depends on the rank of the realization used.

Remark. In general, we know that $\operatorname{Hom}_{\mathbb{S B i m}\left(\mathbb{C}^{n}, S_{n}\right)}(A, B)$ and in fact $\operatorname{Ext}_{\mathbb{S} \operatorname{Bim}\left(\mathbb{C}^{n}, S_{n}\right)}(A, B)$ are free as left/right R_{n}-modules so one might naively hope that as $\mathfrak{s l}_{2}$-modules

$$
\operatorname{Hom}_{\mathbb{S B i m}\left(\mathbb{C}^{n}, S_{n}\right)}(A, B) \stackrel{?}{\cong} \bigoplus \bigotimes \nabla\left(a_{i_{1}}\right) \otimes \ldots \nabla\left(a_{i_{n}}\right)
$$

If this were true, one can imagine that by using the $\mathfrak{s l}_{2}$ action we can prove a lot of structural properties in the Soergel category but unfortunately this won't be true.

3 Filtrations

- (A $\mathfrak{s l}_{2}$-category is where $\mathfrak{s l}_{2}$ acts on morphism spaces)
- Main Theorem of EQ'22 $=$ categories appearing in type A categorical representation theory are $\mathfrak{s l}_{2}$-categories.
- Any $\left(R_{n}, \mathfrak{s l}_{2}\right)$-module structure on R_{n} is isomorphic to $R_{n}\langle p(\vec{x})\rangle \cong \nabla\left(a_{1}\right) \otimes \ldots \otimes \nabla\left(a_{n}\right)$ where $p(x)=\sum a_{i} x_{i}$ and $d\left(1_{p(\vec{x})}\right)=p(\vec{x}) \cdot 1_{p(\vec{x})}$.
- $\operatorname{Hom}_{\mathbb{S B i m}\left(\mathbb{C}^{n}, S_{n}\right)}(A, B)$ is free as left/right R_{n}-module.
(Similarly, last semester Alvaro gave a sketch that $\vec{j}^{R} R(\nu)_{\vec{i}}$ is free as an abelian group following [KL09]. The basis constructed had all dots at the bottom and so the proof also shows that $\vec{j} R(\nu)_{\vec{i}}$ is free as an R_{k}-module, where $k=|\nu|$ is the number of strands. Again, the naive hope that morphism spaces is a direct sum of tensor product of covermas is wrong. HOWEVER, it turns out)

Definition 3.1. Let M be a $\left(R_{n}, \mathfrak{s l}_{2}\right)$-module which is free and f.g. as a graded R_{n}-module so that $M=\oplus_{i \in I} M_{i}$ where each M_{i} is free of rank 1 over $R_{n} . \oplus_{i \in I} M_{i}$ is called a downfree filtration on M if
(1) z preserves each M_{i}.
(2) \exists partial order \leq on I s.t. $d\left(M_{i}\right) \subset \oplus_{j \leq i} M_{j}$ for all $i \in I$

A homogeneous basis of M as an R_{n}-module is called downfree if it induces a downfree filtration on M.

Remark. Condition (2) above is similar to Sullivan algebras appearing in rational homotopy theory.
Given any poset (I, \leq), we can always refine it to a (nonunique) total ordering $(I, \stackrel{\star}{\leq})$ such that $i \leq$ $j \Longrightarrow i \stackrel{\star}{\leq} j$.

Example 4. The Bruhat order on S_{3} can be refined to $e<s<t<s t<t s<s t s$.
It follows that $\underset{\substack{\star \\ j \leq i}}{ } M_{j}$ are $\left(R_{n}, \mathfrak{s l}_{2}\right)$ submodules of M that gives a filtration on M with quotients that are free of rank 1 over R_{n}.

Definition 3.2. Let M be an $\left(R_{n}, \mathfrak{s l}_{2}\right)$-module with a downfree filtration. Each subquotient must be isomorphic to $R_{n}\left\langle p_{i}(\vec{x})\right\rangle$ for a unique $p_{i}(\vec{x}) \in R_{n}$. The multiset of linear polynomials $\left\{p_{i}(\vec{x})\right\}_{i \in I}$ is called the downfree character of M with respect to the filtration.

Remark. The downfree filtration and character are analogues of the Δ-filtration and characters for Soergel Bimodules.

Theorem 2 (Real Main Theorem of EQ'22)
The morphism spaces with corresponding poset in the following categories

- $\bigoplus_{\alpha \in Q^{+}} R(\alpha)-\bmod ($ Bruhat Order)
$\alpha \in Q_{A_{n-1}}^{+}$
- $\mathscr{D}\left(\mathbb{C}^{n}, S_{n}\right)$ (LexicoBruhat order on CoTerminal Bruhat Strolls)
are downfree with basis given by (crossings)permutations in $S_{|\alpha|}$ and the double leaves basis, respectively. An explicit computation of their downfree characters is also given. ${ }^{a}$

[^0]Example 5. We have that $\operatorname{Hom}_{\mathscr{D}\left(\mathbb{C}^{2}, S_{2}\right)}\left(B_{s}, B_{s}\right)=R_{2} \cdot \mid \oplus R_{2} \cdot \stackrel{\downarrow}{\bullet}$ with poset $\mid<\stackrel{\downarrow}{\bullet}$ Compute $d(\|)$ and $d\binom{\mathrm{~d}}{\mathbf{\emptyset}}$. We therefore have the filtration of $\left(R_{2}, \mathfrak{s l}_{2}\right)$-modules

$$
0 \subset R_{2} \cdot \mid \subset \operatorname{Hom}_{\mathscr{D}\left(\mathbb{C}^{2}, S_{2}\right)}\left(B_{s}, B_{s}\right)
$$

is downfree with downfree character $\left\{0, x_{1}+x_{2}\right\}$ and

$$
R_{2} \cdot\left|\cong \nabla(0) \otimes \nabla(0), \quad \quad \operatorname{Hom}_{\mathscr{D}\left(\mathbb{C}^{2}, S_{2}\right)}\left(B_{s}, B_{s}\right) / R_{2} \cdot\right| \cong \nabla(1) \otimes \nabla(1)
$$

This filtration actually splits since $R_{2} \cdot \stackrel{\downarrow}{\dot{b}}$ is also a $\mathfrak{s l}_{2}$ submodule.
Example 6. Let $n=2$, then $K L R\left(A_{1}\right)=\bigoplus_{m \geq 0} R(m \alpha) \cong \bigoplus_{m \geq 0} N H_{m}$. We can think of this as a \mathbb{k}-linear monoidal category \mathscr{N} by setting \bullet as the generating object with generating morphisms a single crossing and dots and define $N H_{m}=\operatorname{End}_{\mathcal{N}}(m, m)$.The Nilhecke relation
[Draw]
allows us to slide all dots to the top or to the bottom. As a result there is a left (=top) and right (=bottom) action of R_{m} where x_{1} corresponds to the first strand on top, etc. It is a Theorem of [KL09] that $N H_{m}$ is free as a left or right R_{m}-module with basis indexed by permutations in S_{m}. For example, $N H_{2}=R_{2} \cdot \mathrm{id} \oplus R_{2} \cdot X$ with poset id $<X$. Define

Now using the NilHecke relation, we have that

We therefore have the filtration of $\left(R_{2}, \mathfrak{s l}_{2}\right)$-modules

$$
0 \subset R_{2} \cdot \mathrm{id} \subset N H_{2}
$$

is downfree with downfree character $\left\{0,-2 x_{1}\right\}$ and

$$
R_{2} \cdot \mathrm{id} \cong \nabla(0) \otimes \nabla(0), \quad N H_{2} / R_{2} \cdot \mathrm{id} \cong \nabla(-2) \otimes \nabla(0)
$$

and now the filtration doesn't split.

4 Core

Definition 4.1. Let \mathbb{k} be char 0 and Noetherian. Let M be a bounded(weights bounded below, wt spaces finite rank) weight module for $\mathfrak{s l}_{2}$. Let

$$
\operatorname{Core}(M)=\left\{m \in M \mid d^{N}(m)=0 \text { for } N \gg 0\right\}
$$

Then Core (M) will be the maximal submodule of M that is f.g. over \mathbb{k}.
Example 7. Core $\left(\nabla\left(a_{i}\right)\right)=W^{\vee}\left(a_{i}\right)$ if $a_{i} \leq 0$, otherwise Core $\left(\nabla\left(a_{i}\right)\right)=0$.
Proposition 4.2. Let $p(x)=\sum a_{i} x_{i} \in R_{n}$ and $a_{i} \in \mathbb{Z}$. Then
(i) If $a_{i}>0$ for some i, $\operatorname{Core}\left(R_{n}\langle p(x)\rangle\right)=0$.
(ii) If $a_{i} \leq 0 \forall i$ then $\operatorname{Core}\left(R_{n}\langle p(x)\rangle\right) \cong W^{\vee}\left(a_{1}\right) \otimes \cdots \otimes W^{\vee}\left(a_{n}\right)$

Proof. (ii) Clearly $W^{\vee}\left(a_{1}\right) \otimes \cdots \otimes W^{\vee}\left(a_{n}\right) \subseteq \operatorname{Core}\left(R_{n}\langle p(x)\rangle\right)$ by 2 nd definition of the core. As $a_{i} \leq$ $0 \forall i, \nabla\left(a_{i}\right) / W^{\vee}\left(a_{i}\right)=\Delta\left(-a_{i}+2\right)$. Therefore $R_{n}\langle p(x)\rangle / W^{\vee}\left(a_{1}\right) \otimes \cdots \otimes W^{\vee}\left(a_{n}\right)$ has a filtration with subquotients isomorphic to $M \otimes \Delta(a)$ for some a. Note $d^{N}(v) \neq 0 \forall v \in \Delta(a)$. If d has no nilpotents on the associated graded, then it has no nilpotents on the entire module, and so by the first definition of the core, $\operatorname{Core}\left(R_{n}\langle p(x)\rangle / W^{\vee}\left(a_{1}\right) \otimes \cdots \otimes W^{\vee}\left(a_{n}\right)\right)=0$ giving the reverse inclusion.

4.1 Decompositions

Let $\operatorname{gJac}(A)$ be the graded Jacobson radical of an algebra A.
Example 8. $\operatorname{gJac}(\mathbb{k}[x])=(x)$. HOWEVER, notice that under the $\mathfrak{s l}_{2}$-isomorphism $\mathbb{k}[x] \cong \nabla(0)$, we have that $\mathbb{k} \cdot 1 \cong W^{\vee}(0)$, aka the compliment of $\operatorname{gJac}(\mathbb{k}[x])$ equals $\operatorname{Core}(\nabla(0))$. Somehow, the $\mathfrak{s l}_{2}$ structure "knows" about the algebra structure.

Definition 4.3. Let \mathscr{C} be an additive (graded) category. Given $X, Y \in \mathscr{C}$, define

$$
\begin{aligned}
\operatorname{rad}(X, Y) & =\left\{f \in \operatorname{Hom}_{\mathscr{C}}(X, Y) \mid \forall g \in \operatorname{Hom}_{\mathscr{C}}(Y, X) \mathrm{id}_{X}-g f \text { is invertible in End } \mathscr{C}(X)\right\} \\
& =\left\{f \in \operatorname{Hom}_{\mathscr{C}}(X, Y) \mid \forall g \in \operatorname{Hom}_{\mathscr{C}}(Y, X) \operatorname{id}_{Y}-f g \text { is invertible in End } \mathscr{C}(Y)\right\}
\end{aligned}
$$

Now define the (graded) Jacobson radical of \mathcal{C} to be

$$
\mathscr{J} a c(\mathcal{C}):=\bigoplus_{X, Y \in \mathcal{C}} \operatorname{rad}(X, Y)
$$

Remark. $\operatorname{rad}(X, X)=\operatorname{gJac}\left(\operatorname{End}_{\mathcal{C}}(X, X)\right)$.

Conjecture 3

For the categories \mathscr{C} above, $\operatorname{Core}(\mathscr{C})=\bigoplus_{X, Y \in \mathscr{C}} \operatorname{Core}\left(\operatorname{Hom}_{\mathscr{C}}(X, Y)\right)$ intersects $\mathscr{J} a c(\mathcal{C})$ trivially.

Corollary 4.4. Assuming Conjecture 3, if B is indecomposable, then any injection $i \in \operatorname{Core}\left(\operatorname{Hom}_{\mathscr{C}}(B, X)\right)$ splits. Similarily with surjections in $\operatorname{Core}\left(\operatorname{Hom}_{\mathscr{C}}(X, B)\right)$.

Proof. $\operatorname{Core}\left(\operatorname{Hom}_{\mathscr{C}}(B, X)\right) \cap \operatorname{rad}(B, X)=0$ means that $\exists g$ s.t. $1-g \circ i$ is not invertible. B indecomposable means $\operatorname{End}(B)$ is a local ring and so $1-(1-g \circ i)=g \circ i$ is invertible so i splits.

Lemma 4.5. Let M be a bounded $\mathfrak{s l}_{2}$-representation. Then

$$
\operatorname{Core}(M)=\operatorname{ker} d+z \cdot \operatorname{ker} d+z^{2} \cdot \operatorname{ker} d+\ldots
$$

This process terminates in a finite number of steps because M is bounded.
Corollary 4.6. Assuming Conjecture 3, if $i \in \operatorname{Hom}_{\mathscr{C}}(B, X)$ is an inclusion(projection) map and dacts nilpotently on i, then $z^{k}(i), d^{k}(i)$ for $k \geq 2$ are also inclusion(projection) maps.

Example 9. In $\mathbb{S} \operatorname{Bim}\left(\mathbb{C}^{2}, S_{2}\right)$

$$
B_{s} \otimes_{R_{2}} B_{s} \cong B_{s}(-1) \oplus B_{s}(1)
$$

(This underlies Reidemeister II invariance in triply graded link homology) $\operatorname{Hom}\left(B_{s}, B_{s} B_{s}^{2}\right)$ has a left R_{2} basis given by the double leaves

$$
\binom{\epsilon \epsilon}{\eta},\binom{\epsilon \circ \mu}{\eta},\left(\begin{array}{cc}
\epsilon & i d \\
& i d
\end{array}\right),\binom{\mu}{i d}
$$

Let us try to find the core. Applying d to the first 3 maps will create polynomials forever. However, note that

Compute $d(Y)$ and $d^{2}(Y)$
7 of 8
and in fact these are the inclusion maps for $B_{s}(1)$ and $B_{s}(-1)$, respectively. For the experts, note that $\Delta(1)=x_{1} \otimes_{s} 1-1 \otimes_{s} x_{2}$ in the $\mathfrak{g l}_{2}$ realization of S_{2}.

Warning. The core doesn't always contain all the inclusion/projection maps!
Example 10. In $\mathbb{S B i m}\left(\mathbb{C}^{3}, S_{3}\right)$

$$
B_{s} \otimes_{R_{3}} B_{t} \otimes_{R_{3}} B_{s} \cong B_{s t s} \oplus B_{s}
$$

The projection map p_{s} for B_{s} will be pitchfork. The projection map $p_{s t s}$ for $B_{s t s}$ will be the Jones-Wenzl projector. We have that $d\left(p_{s}\right)=0$, but $d\left(p_{s t s}\right) \neq 0$ (One needs to define d on thick soergel calculus first). In fact $\operatorname{Core}\left(\operatorname{Hom}\left(B_{s} B_{t} B_{s}, B_{s t s}\right)\right)=0$! However,

- $d\left(p_{s t s}\right) \in \operatorname{Hom}\left(B_{s}, B_{s t s}\right) \circ p_{s}$
- $\operatorname{Core}\left(\operatorname{Hom}\left(B_{s} B_{t} B_{s}, B_{s t s}\right) /\left(\operatorname{Hom}\left(B_{s}, B_{s t s}\right) \circ p_{s}\right)\right)=\mathbb{k} \cdot p_{s t s}$

In fact, the opposite is true, namely

- $d\left(i_{s t s}\right)(=d(J W) \circ J W ?)=0$
- $d\left(i_{s}\right) \in i_{s t s} \circ \operatorname{Hom}\left(B_{s}, B_{s t s}\right)$
- $\operatorname{Core}\left(\operatorname{Hom}\left(B_{s}, B_{s} B_{t} B_{s}\right) /\left(i_{s t s} \circ \operatorname{Hom}\left(B_{s}, B_{s t s}\right)\right)\right)=\mathfrak{k} \cdot i_{s}$

In general one needs to take iterated cores in order to find enough projection/inclusion maps to split X into indecomposables.

Definition 4.7. Let \mathcal{C} be an $\mathfrak{s l}_{2}$-category. The $\mathfrak{s l}_{2}$-enriched category $\mathcal{C}_{\text {enrich }}$ will be an $\mathfrak{s l}_{2}-$ category defined as follows.

- Objects: $B \boxtimes V$ where $B \in \mathcal{C}$ and $V \in \operatorname{Rep}_{\text {f.d. } \mathfrak{s l}_{2}}$
- Morphisms:

$$
\operatorname{Hom}_{\mathcal{C}_{\text {enrich }}}\left(B \boxtimes V, B^{\prime} \boxtimes V^{\prime}\right):=\operatorname{Hom}_{\mathcal{C}}\left(B, B^{\prime}\right) \otimes \operatorname{Hom}_{\mathfrak{s l}_{2}}\left(V, V^{\prime}\right)
$$

Remark. There will be a monoidal action of $\operatorname{Rep} \mathfrak{s l}_{2}$ on $\mathcal{C}_{\text {enrich }}$, where on objects one has

$$
(B \boxtimes V) \otimes V^{\prime}=B \boxtimes\left(V \otimes V^{\prime}\right)
$$

As a consequence, it follows that the Grothendieck ring $K_{\Delta}\left(\mathcal{C}_{\text {enrich }}\right)$ will be a module over $K_{0}\left(\operatorname{Rep} \mathfrak{s l}_{2}\right)=$ $\mathbb{k}[\mathbb{Z}]^{S_{2}}=\mathbb{k}\left[q+q^{-1}\right]$. Therefore, given a basis for $K_{\Delta}\left(\mathcal{C}_{\text {enrich }}\right)$ over $K_{0}\left(\operatorname{Rep} \mathfrak{s l}_{2}\right)$, structure constants will be unimodal polynomials.

[^0]: ${ }^{a}$ For double leaves, it's a decorated version of Deodhar's formula.

